
Chapter 6

Permutations

A permutation is a bijection from a set S to itself. We shall take S to be finite in this Chapter. We shall

also introduce a new notation for functions. Instead of using the notation f(x) (where x is a member of

some set S and f : S → T a function) we shall use the more compact notation xf . In this notation f

goes on the right, which will facilitate some of our calculations with permutations. If g : T → U then

xfg means : take x, apply f and then apply g, in other words xfg is g(f(x)) in the notation we used in

Chapter 2.

We usually label elements of our finite set S by 1, 2, . . . , n. We adopt the “two line” notation for permu-

tations.

Examples

1. Let S = {1, 2, 3, 4} and let α : S → S be the bijection given by α(1) = 4, α(2) = 3, α(3) = 1 and

α(4) = 2. In our new notation this is 1α = 4, 2α = 3, 3α = 1 and 4α = 2. We represent α by(
1 2 3 4
4 3 1 2

)
.

2. We take S = {1, 2, 3, 4, 5} and let α : S → S be the bijection given by 1α = 3, 2α = 1, 3α = 4, 4α = 2,

5α = 5. We represent α by (
1 2 3 4 5
3 1 4 2 5

)
.

Notation

Given a permutation α of the set {1, 2, . . . , n} we represent α by(
1 2 · · · n
a1 a2 · · · an

)
where 1α = a1, 2α = a2, . . . , nα = an. This is called the two line notation.

Lemma 6.1 There are n! different permutations of {1, 2, . . . , n}.
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Composition of Permutations

The two line notation makes it easy to calculate αβ, given permutations α, β.

Example For α =
(

1 2 3 4
2 3 1 4

)
and β =

(
1 2 3 4
3 4 1 2

)
we have

αβ =
(

1 2 3 4
4 1 3 2

)
.

(1 → 2 → 4, 2 → 3 → 1, 3 → 1 → 3, 4 → 4 → 2)

Notation

(i) We write αk for αα . . . α (k times).

(ii) We write ι (iota) for the identity permutation, that is to say the map given by xι = x, for all x ∈ S.

In two line notation ι is
(

1 2 · · · n
1 2 · · · n

)
. Note that αι = ια = α, for every permutation α.

A permutation has an inverse (since it is a bijection). We write α−1 for the inverse of α. We define α−r

to be α−1α−1 . . . α−1, the inverse of αr. We define α0 to be ι.

Lemma 6.2 Let α be a permutation. Then there exists a positive integer k such that αk = ι.

Definition The order of a permutation α is the smallest positive integer m such that αm = ι.

Lemma 6.3 Let m be the order of α. Then αk = ι if and only if m divides k.

Notation Suppose a1, a2, . . . , ar are distinct elements of {1, 2, . . . , n}. Write (a1a2 . . . ar) for the permu-

tation taking a1 to 2, taking a2 to a3,..., taking ar−1 to ar, taking ar to a1 and leaving all other elements

fixed. We call (a1a2 . . . ar) a cycle and call r the length of the cycle.

Example For n = 5, the cycle (314) is the permutation taking 3 to 1, taking 1 to 4 and taking 4 to 3.

In two line notation this is
(

1 2 3 4 5
4 2 1 3 5

)
.

Sometimes we put in the cycles of length 1, but usually we miss them out, so we can write(
1 2 3 4 5
4 2 1 3 5

)
= (314)

or (
1 2 3 4 5
4 2 1 3 5

)
= (314)(2)(5).
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Note that in fact a cycle (a) of length one is the identity (it takes a to a and leaves all other elements

fixed too).

Lemma 6.4 Every cycle of length r has order r.

We shall prove that every permutation is a product of disjoint cycles (cycles no two of which contain a

common element) but first we look at some examples.

Examples

1. Let α =
(

1 2 3 4 5 6 7
6 4 5 1 7 2 3

)
. So α takes 1 to 6, takes 6 to 2, takes 2 to 4 and takes 4 to 1, giving

the cycle (1624). Also α takes 3 to 5, takes 5 to 7 and takes 7 to 3 giving (357). We get α = (1624)(357).

2. Let α =
(

1 2 3 4 5 6 7
7 6 5 4 3 2 1

)
. Then α = (17)(26)(35)(4).

Definition Permutations α and β commute if αβ = βα.

Example Let α =
(

1 2 3
2 1 3

)
and β =

(
1 2 3
2 1 3

)
. Then αβ = ι = βα so α and β commute.

Definition Cycles (a1a2 . . . ar) and (b1b2 . . . bs) are disjoint if no ai is equal to a bj .

Example (124) and (356) are disjoint cycles, but (132) and (234) are not.

Lemma 6.5 Disjoint cycles commute, i.e. if α = (a1 . . . ar) and β = (b1 . . . bs) are disjoint cycles then

αβ = βα.

Definition Let α be a permutation of S = {1, 2, . . . , n} and let x ∈ S. The orbit of x under α is the set

of elements {x, xα, xα2, . . .}.

Example For α = (1624)(357) the orbit of 1 is {1, 6, 2, 4} and the orbit of 3 is {3, 5, 7}.

Notation Let α be a permutation of S = {1, 2, . . . , n}. Define a relation ∼ on S by x ∼ y if y = xαk,

for some integer k.

Lemma 6.6

(i) ∼ is an equivalence relation.

(ii) The orbit of x ∈ {1, 2, . . . , n} is the equivalence class containing x.

Let α be a permutation and E an orbit. Pick a ∈ E. Note that if α has order m then αm = ι so aαm =

aι = a. Let r be the smallest positive integer such that aαr = a and put a1 = a, a2 = aα, . . . , ar = aαr−1.
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We claim that a1, . . . , ar are all different. If not, we have ai = aj for some 1 ≤ i < j ≤ r, and so

aαi−1 = aαj−1 giving aαi = aαj and hence a = aαj−i. But j − i < r, and r is the smallest positive

integer such that aαr = a, so this is impossible.

Hence the a1, . . . , ar are distinct and (a1 . . . ar) = c, say, is a cycle. Since {a, aα, . . .} = {a1, . . . , ar} we

see that {a1, . . . , ar} = E, the orbit of a. [Remember that in writing down a cycle the order is important,

e.g. (123) 6= (132), but in writing down an orbit it is not: {1, 2, 3} = {1, 3, 2}.]

Now if x ∈ E then x = ai for some 1 ≤ i ≤ r so that xα = aiα = aαi−1α = aαi, which is ai+1 if i 6= r

and if i = r we get xα = aαr = a = a1. So we have

aiα =
{

ai+1, if i < r;
a1, if i = r

= aic.

To summarise, we have shown the following.

Lemma 6.7 Let E be an orbit of α and let c be the associated cycle, constructed as above. Then we have

xc =
{

xα, if x ∈ E;
x, if x 6∈ E.

Example For α =
(

1 2 3 4
2 4 3 1

)
we have an orbit E = {1, 2, 4}, the corresponding cycle c = (124),

and

xc =
{

xα, if x ∈ {1, 2, 4};
x, if x = 3.

Proposition 6.8 Every permutation can be written as a product of disjoint cycles.

Example For α =
(

1 2 3 4 5
3 2 1 5 4

)
we have α = (13)(2)(45).

Proposition 6.9 The cycle decomposition is unique, i.e. if

α = c1c2 . . . cs = d1d2 . . . dt

where c1, . . . , cs are disjoint cycles and where d1, . . . , dt are disjoint cycles then s = t and, after reordering

the dj’s if necessary, we have c1 = d1, . . . , cs = ds.
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Properties of cycles and cycle decompositions

1) Let d1, . . . , ds be positive integers. The least common multiple m, say, is the smallest positive integer

divisible by d1, . . . , ds.

Suppose that α has cycles decomposition α = c1 . . . cs, and di is the length of the cycle ci. Then the order

of α is the least common multiple of d1, . . . , ds.

Examples (124)(3657) has order the lcm (least common multiple) of 3 and 4, namely 12.

(12)(5768)(34) has order the lcm of 2, 4, 2, namely 4.

2) Call permutations α and β conjugate if there is some permutation γ such that β = γαγ−1. Suppose

we write α as a product of disjoint cycles c1, c2, . . . , cs of lengths r1 ≥ r2 ≥ · · · ≥ rs. The sequence

(r1, r2, . . . , rs) is called the cycle type of α. Permutations α and γ are conjugate if and only if they have

the same cycle type.

Examples

1. (12)(3564) and (34)(1526) are conjugate (they both have cycle type (4, 2)).

2. (123)(456) and (12)(34)(56) are not conjugate. (The first has cycle type (3, 3) and the second has

cycle type (2, 2, 2).)

Parity

Permutations come in two types : even and odd.

Definition A transposition is a permutation which interchanges two elements and leaves all others fixed.

So a transposition is a cycle of length 2, i.e. (ab), for some a, b ∈ {1, 2, . . . , n} with a 6= b.

Proposition 6.10 Any permutation is a product of transpositions.

Example
(

1 2 3 4 5
2 3 1 5 4

)
= (123)(45) = (13)(23)(45).

We would like to say that a permutation is even if it can be written as a product of an even number of

transpositions and odd if it can be written as an odd number of transpositions. But how do we know

that some permutation can’t be written in one way as a product of an even number of transpositions and

in another way as a product of an odd number? One way to see this is as follows.

Definition An n× n matrix A is called a permutation matrix if all its entries are 0’s and 1’s and it has

just one non-zero entry in each row and column.
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If α is a permutation of the set {1, 2, . . . , n} we can associate to it the permutation matrix A(α) which

has aij = 1 whenever iα = j and aij = 0 for all other pairs {i, j}.

Proposition 6.11 A(αβ) = A(α)A(β)

Let |A| denote the determinant of the matrix A. (This is always +1 or −1 for a permutation matrix.)

Corollary 6.12 |A(αβ)| = |A(α)||A(β)|

Definition A permutation α is said to be even if and only if |A(α)| = +1 and odd if and only if

|A(α)| = −1.

Proposition 6.13 A permutation α is even if and only if it can be written as a product of an even

number of transpositions, and it is odd if and only if it can be written as a product of an odd number of

transpositions.

Groups

The set Sn of all permutations of {1, 2, . . . , n} is an example of an algebraic structure called a group.

A group G is a set equipped with a multiplication such that:

1) it is associative: (ab)c = (ab)c for all a, b, c ∈ G;

2) there is an identity element e ∈ G such that ae = a = ea for all a ∈ G;

3) every a ∈ G has an inverse a−1 such that aa−1 = a−1a = e.

Sn is a group, with ι as its identity element. Another example of a group is {+1,−1}, with the usual

multiplication.

Corollary 6.12 says that the map φ from Sn to {+1,−1} defined by α 7→ |A(α)| has the property that

φ(αβ) = φ(α).φ(β). Maps with this property are called group homomorphisms. They will be studied in

the course MAS201 Algebraic Structures I.
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